AUDL 4007
Auditory Perception

Week 1

The cochlea & auditory nerve:
Obligatory stages of auditory
processing

Think of the ear as a collection
of ‘systems’, transforming
sounds to be sent to the brain

inner
hair cells

outer ear middle ear

@ > /j > 7 kY
( A
A\ basilar
-—-{ &S membrane

Neural firing depends upon
basilar membrane vibration
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Basilar membrane motion to two
sinusoids of different frequency
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Defining the envelope of the
travelling wave

allkhalf.mov

A crucial distinction
excitation pattern vs. frequency response

e Excitation pattern — the vibration pattern across
the basilar membrane to a single sound.
- Input = 1 sound.
- Measure at many places along the BM.

e Essentially the envelope of the travelling wave
e Related to a spectrum (amplitude by frequency).
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A crucial distinction
excitation pattern vs. frequency response

e Frequency response — the amount of vibration
shown by a particular place on the BM to
sinusoids of varying frequency.

- Input = many sinusoids.

- Measure at a single place on the BM.

- Band-pass filters at each position along the basilar
membrane.
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Two sides of the same coin:
Deriving excitation patterns for a 1 kHz
sinusoid from frequency responses
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Frequency responses with centre frequencies
running from 1400 — 600 Hz
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Deriving excitation pattern from auditory filters
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Now the other way around:
filter shapes from excitation patterns
Flip the orientation of the axis and schematise
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The other side of the coin:
Deriving a frequency response at 1 kHz
from excitation patterns
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Excitation patterns with centre frequencies Deriving frequency responses from excitation
running from 1200 — 400 Hz patterns
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FIG. 10. A family of isointensity curves representing the gain (velocity
divided by stimulus pressure) of basilar-membrane responses to tone pips as
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Waveform of response to clicks on the
basilar membrane (a.k.a. ?)
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Fourier
transform the
response to
clicks to
obtain the
frequency
response
(valid when?)

Gain re umbo (dB)

Frequency (kHz)

Innervation of the cochlea

Neuron

Cochlear
Nerve

90-95% of afferents are myelinated, synapsing with a single inner hair cell (}12-|C).

Four aspects of firing patterns
on the auditory nerve

e The coding of intensity.

e The representation of the place
code.

e The representation of temporal
fine structure (for intervals ranging
up to =20 ms).

e The representation of gross
temporal structure.
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Intensity

Rate-level
functions for
auditory nerve
fibres

Observe!
e Threshold
e Saturation

¢ Limited dynamic range

DISCHARGE RATE {spikes /sec)
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However, firing rates
depend not only on
sinusoidal sound
intensity but also on

sound ...
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Firing rate across frequency and level
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The ‘best’ frequency of a particular tuning curve

‘Audiograms’ of single auditory nerve
fibres reflect BM tuning

depends upon the BM position of the IHC to
which the afferent neuron is synapsing
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BM and neural tuning compared

B same cochlea
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‘filtered’ is high-pass filter at 3.8 dB/octave. From Ruggero -
et al. 2000

Temporal coding (up to =5 kHz)

Information about stimulus
frequency is not only coded by
which nerve fibres are active
(the place code) but also by
when the fibres fire (the time
code).
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The firing of auditory nerve fibres is
synchronized to movements of the hair
cell cilia (at low enough frequencies)

Single Haircell 3 S
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Acoustic
Waveform
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Auditory nerves tend to fire to low-frequency sounds
at particular waveform times (phase locking).

Spikes
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Time

Stimulus waveform (0.3 kHz)

Evans (197582




But phase-locking is limited to
lower frequencies ...

e Synchrony of neural firing is strong up
to about 1-2 kHz.

e No evidence of synchrony above 5
kHz.

e The degree of synchrony decreases
steadily over the mid-frequency
range.
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... as readily seen in a period histogram
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Period histograms across frequency
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Note half-wave rectification and synchrony indexss

Constructing an interval histogram
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Neural stimulation to a low
frequency tone
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Sound energy propagates to the characteristic place of the tone
where it causes deflection of the cochlear partition. Neural spikes,
when they occur, are synchronized to the peaks of the local
deflections. The sum of these neural spikes tends to mimic the wave
shape of the local deflections. 39

Period histograms to more complex
sounds
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Gross temporal structure
Enhanced response to sound onsets:
The value of novelty

150 o

PST (Peri-Stimulus Time) histogram

Number of spikes

Where we've got to ...

e Outer ear channels sound to the middle ear,
and can be characterized as a bandpass filter.

e Middle ear effects an efficient transfer of
sound energy into the inner ear, again with
the characteristics of a bandpass filter.

e Inner ear
- Transduces basilar membrane movements into nerve
firings ...
- which are synchronised to peaks in the stimulating
waveform at low enough frequencies
- Performs a mechanical frequency analysis, which can
be envisioned as the result of analysis by a filter

bank.
50
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Tone burst 41 42
Auditory Nerve Structure and Function
wq A Tuning curves c A systems model of the
' S di iph
AN , 7 \Cochlea auditory periphery
g N \ =
9 = . . /\— -
2 40 \ g \
@ . Tip \
£ 20 \ / - A I inner
= Y cae \ ) — outer ear middle ear hair cells
o y
\C?ﬂ;f:t?c 7 : / =
20 r T T Pueripheral \ \ )
e 10 10 \ aon Socy : —=
Apex Frequency (k-2) | >
", B / B =\
3 Cochlear Cortral // /auditory =
< %0 Anon N
Frequenc /
g 4 B Mas y //,\ tory // Nerve =
E 401 ) // i Tracer basilar nerve
2 / i Single-unit membrane fibres
S ®7 Nudleus ) ___ Recording
- O v v T " Borser  Electrode
o 10 10 60
Base  Characteristic Frequency (kH2)
44

Liberman (1982) 43




What properties should the
filter bank have?

e Filter spacing
— Corresponding to tonotopic map
e Filter bandwidth

—vary with frequency as on the basilar
membrane

¢ Filter nonlinearity

—vary gain and bandwidth with level as
on the basilar membrane
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Modelling the hair cell/auditory
nerve synapse

e Neuro-
transmitter is
released )
when cilia are i

pushed in one : L4

40 dB SPL 50 dB SPL 60 dB SPL

direction oo

OnlY! tled to period histograms
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motion
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rectification
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Modelling the hair cell/auditory
nerve synapse

period histograms across frequency
Phase-
locking is
limited to
low
frequencies

- low-pass
filtering

PERCENTAGE OF TOTAL
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Simulating hair cell transduction at
500 Hz
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Simulating hair cell transduction at

1000 Hz
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Simulating hair cell transduction at

2000 Hz
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Simulating hair cell transduction at

4000 Hz
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Simulating hair cell transduction at
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8000 Hz
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Modelling the hair cell/auditory
nerve synapse

150

Neural stimulation to a low
frequency tone

e Rapid Stanes
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A spectrogram with ‘ear-like” processing
14 -
We’'re done! (Giguere & Woodland, 1993)
(but need agc here) (typical spectrogram properties in italics)
e A first-stage broad band-pass linear filter to
er mimic outer and middle ear effects (pre-
outer ear middle ear hair cells emphaSIs f/lter).
—= ¢ A filterbank whose centre frequencies are
arranged in the same way as the human
: —= tonotopic (frequency to place) map ... (equal
B —{ 5 — spacing of filters in Hz).
—— == e with non-linear filters whose bandwidths
5 increase as level increases (linear filters with a
) fixed bandwoidth).
oasiar foree e Smearing of temporal information so as to

55

mimic the frequency limitation of phase

locking in the auditory nerve (smearing by
choice of temporal window/filter bandwidth —
no extra processing ). 56




An auditory spectrogram

o
=3

(kHz)

g
=3

Frequency

—

0.5

0.1

1.4 Time (s) 1.7

1k

Types of Spectrogram

Wide-band Narrow-band Auditory
I = il
! — = 2412 A "‘
R 1765 -
) 3k g“—‘ lzji:
g B
= ,‘Iiuluhutmmm
] LAY
A = l

An auditory spectrogram looks like a wide-band spectrogram at high
frequencies and a narrow-band spectrogram at low frequencies (but
with more temporal structure). 58

Laboratory session: A computer
implementation of essentially
this model
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membrane fibres
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A cochlear simulation

Input Simulation View Help
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Flip it around A cochlear simulation

o _—
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2
How should we look at the
. output of the model?

Could look at the output But hard to see what is going on
waveforms

(especially for complex waves)

input signal

Input Simulation View He

~loix
Help
D3| G| »[w m| ] [sawoon =] f+]f-| a+|a-
aaaaaaaaaa
| | |
L L L
nnnnnn :
22222 |
- V—T—]]
44444 s [ ¢ |
zzzzz = = = - ‘
- e e — A AT S A A ) |
. 1385- T T T ]
output 8|gna| - BT i R AT S e {
\
1 — | | |
EW\M ol
: o, S M g e s s e e Ay
£ ———————————
W
— — ‘ ‘ [l
[
SO S OUS ————————, | “
100- 77777—‘ 77777777777777777 RS —— ‘ ‘ apex
63 kkkkkkkkkk ee  jaircell activiy 4 -89 pasilar meubrane 64
Ready Loud=52 |Amp=60.0d8 500.0Hz




Solution: encode wave amplitude
in a different way

W\/\/\/\/\’ waveform at 200 Hz

- A /\ /\ A /\ N\ rectified & smoothed

spectrographic

amplitude
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waveform amplitude is recoded as

the darkness of the trace
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Encode wave amplitude as trace
darkness

AANW‘MNWW‘MNWWMNW‘MNWWW\ waveform at 1 kHz

VAW W, eCfied & smoothed
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Encode wave amplitude as trace
darkness

waveform at 4 kHz
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Construct the output display one
strip at a time

input signal at 200 Hz

| SR T R T TR S
output display
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Construct the output display one 4 kHz + 200 Hz

strip at a time

input signal at 4 kHz

. amplitude
amplitude
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output display output display
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4 kHz + 200 Hz Audltory and ordinary spectrograms
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